
NASA-CR-192965

1510 THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991

Simulation of Chemical Kinetics -
a Promising Approach to Inference Engines

L. Olac Fuentes and Vladik Kreinovich

, , _,L

/?/

University of Texas, E1 Paso, TX, USA

A rule A,B _ C from a knowledge base means that if we have reasons to believe in A and

B, then our degree of belief in C increases.

Likewise a chemical reaction A + B --+ C means that adding A and B increases the concen-

tration of C. So: Assign to every property A with degree of belief t(A) a fictitious substance

with concentration t(A), to every rule - a reaction, simulate the reactions, and here's an inference

engine. This idea was tried, but was inefficiently slow.

We used chemical equations for quick reactions instead - and programs worked!

(NASA-CR-192965) SIMULATION OF N93-72294

CHEMICAL KINETICS: A PROMISING

APPROACH TO INFERENCE ENGINES

(Texas Univ.) 8 D Unclas

Z?/25 0159188

PREf,_OING PhG£ ELAi_K NO; FILMku

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991 1511

1. FORMULATION

OF THE PROBLEM

From the user's viewpoint an expert sys-
tem is a computer-based device that can

sometimes substitute an expert: you ask a
question and it gives an answer:

question _ BLACKBOX --_ answer

The main drawbacks of existing expert sys-
tems from this viewpoint are as follows:

1) sometimes it takes too much time to get
an answer;

2) sometimes it doesn't give any answer at
all.

From the designer's viewpoint an expert
system is not a black box: it is a "box"
filled with facts and rules plus a mechanism

for answering questions that is called an in-
ference engine. There exist algorithms like

exhaustive backtracking that would finally
give an answer to any query for a proposi-
tional knowledge base. But the running time
for these algorithms grows exponentially with
the size of the knowledge base, so we have to
delimit these times, and these time limita-
tions explain why sometimes the user gets no
answer at all. So from the designer's view-
point the main drawback of the expert sys-
tems is that inference engines are ohen too
slow. How to speed them up?

2. CHEMICAL KINETICS

APPROACH: MAIN IDEA

How inference engines work

(crude approximation)

In order to figure out how to speed up
an inference engine let's describe briefly how

it works now. Knowledge in expert systems
usually consists of facts A,B,... and rules "if
A, then B" or "irA,B, then C", etc, where

A,B,C.,... are elementary statements (facts

or generalized facts). Example of a rule:
if a person has a fever and no rash, then it

is probably the flu. Here A ="a person has a
fever", B ="no rash" and C ="flu" are ele-

mentary statements (i.e., possible facts). The
difference between this rule and the above

forms is that it contains the word proba-
bly. To express such words in expert sys-

tems usually numbers from [0.1] are used:

0 means absolutely false, 1 means absolutely
true, 0.5, 0.6,... mean that we are not sure.

Now we are ready to describe how an

inference engine works: if we have a rule "ifA

and B, then C" in our knowledge base, then
if we already have some reasons to believe in

A and B, we get some belief in C.

Example. Suppose we have 3 statements

A,B,C. Before applying any rules we had
some reasons to believe in A and B and no
prior reasons to believe in C, so our prior be-

liefs are: t(A) = 0.6, t(B) = 0.4, t(C) = O.

Then we apply the rule A, B _ C and as a re-

sult our degree of belief in C increases. E.g.,
if "and" corresponds to the product of the de-
grees of belief, then after applying the rule

wg have new degrees of belief: t(A) = 0.6,

t(B) = 0.4, t(C) = 0.24.

We placed here this oversimplified de-

scription with purpose: it invokes a natural
analogy with a well developed area of human

knowledge, namely, with chemistry.

Natural analogy with chemistry

Application of a rule A,B --* C is a nat-
ural analog of a chemical reaction A + B ---* C
in the following sense: application of the rule
increases our degree of belief in C, while when
we apply the chemical reaction we increase
the concentration of a substance C. So:

1) a natural analog of an elementary

statement A is a substance A;

2) a natural analog of a degree of belief

t(A) is a concentration of a substance A;

3) a natural analog of a rule A,B _ C
is a chemical reaction A + B _ C.

This analogy can be traced further. E.g.,
if our belief in A increases, then our belief

in the opposite statement "not A" (-_A) de-
creases and vice versa. Likewise situations
exist in chemistry: e.g., adding some acid into
the mixture of substances decreases the alkali
concentration and vice versa. So a natural
analog of A and _A are the substances that
annihilate each other: A + _A _ media.

r-

\ ,

1512

This is not just a vague analogy good for

speculations only, it has really been tried as
a heuristic rule for an inference engine.

How to construct an inference engine :

an idea of Matiyasevich

Given: a knowledge base, i.e., a set of state-

ments of the type A; A -* B; A,B _ C. It is
necessary to figure out whether A, B and C
are true or not.

We do the following (Matiyasevich (1987)):

1) the formula A _ B means that A im-

plies B. This means also that if B is false,
then A is false, i.e., it means also _B _ -_A.
Likewise A, B ---* C means also that A,_C --_
_B and B,_C ---* _B. So the first step is
that we write down all these additional equa-

tions. For example, if the initial knowledge
base consisted of the statements A; A ---* B;

A,B ---* C, then after this step the result-
ing set of statements is: A; A --_ B; _B ---*
_A; A,B _ C; A,-_C _ _B; B,_C ---* _A.

2) To each of the elementary for-
mulas A,B,C,... and to their negations
-_A, _B,_C,... we assign a fictitious chemical
"substance" A,B,C,...,_A,_B,_C,... and
write down the correspondent chemical kinet-

ics equation. In the above example the equa-
tions will be: _ A, A--_ B, -_B --*-_A, A+

B ---* C, A + _C --_ _B, B +-_C --*-_A.

3) Write down the correspondent equa-
tions of chemical kinetics: (see, e.g., Aris

(1969)). Every reaction of the type A + B
C leads to the terms +kAB in dC/dt and

-kAB in dA/dt and dB/dt, where k is some
constant. In the above example the resulting

equations are:

dA

dt
- c-kA-kAB-kA_C

dB/dt = kA - kAB - kB_C

dC/dt = kAB

d_A/dt = k_B + kB_C

d-_B/dt = -k_B + kA_C

d--,C / dt = -k A _C - k B _C.

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991

4) Then we solve this system numeri-

cally, starting from small equal (or random)
initial values of all concentrations. In doing
this we simulate the interaction of the sub-
stances with each other, and we expect that

finally we'll get a solution "in vitro": the sub-
stances that correspond to true elementary
statements will stay, and substances that cor-
respond to false elementary statements will
eventually disappear. If it does not happen
for the chosen initial conditions, then we can

try again for some other randomly chosen ini-
tial concentrations, etc.

Matiyasevich proved that if a system
of chemical reactions arrives at a "stable"
state and we assign the values "true" and
"false" to our elementary statements depend-

ing on whether the corresponding substance
survived or not, we get the truth values for
which all the formulas of the original knowl-

edge base are true.

Remaining problems

Does this system always arrive at a "sta-
ble" state? If it does arrive sooner or later,
is it sooner or later? That's the problem we

started with: to get an answer we need so
much time that it becomes senseless.

3. CRITICISMS AND WAY OUT

Criticisms

Blass and Gurevich (1989) proved that

for some reasonable examples the running
time of Matiyasevich's algorithm is exponen-

tially big. Actually, they proved that the
probability that it reaches a stable state is
very low, so we need exponentially many tries
with random initial concentrations to reach
the stable state after all.

Way out: an idea

Matiyasevich expected that chemical re-
actions will eventually rule out the unwanted
substances, but what Blass and Gurevich ac-

tually proved is that the reactions he used
are too slow to do that. Why? The idea it-

self looks promising, so maybe something is

wrong with its implementation (namely, with

the chemical kinetics equations that we used).

It seems to us that this is really the
case. Indeed, where do the chemical kinet-

ics equations come from? Why do we as-
sign to the reaction A + B --_ C the equa-
tion dC/dt = kAB? The reaction occurs

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991 1513

when a (randomly located) molecule of A en-
counters a randomly located molecule of B.
In normal chemical situations concentrations
are sufficiently small, so the molecules rarely

encounter, and whether a given molecule of
A encounters a molecule of B is a random
event with the probability proportional to the
concentration of B's. These random events
for different molecules of A are uncorrelated,

therefore the total probability (and hence the

total number of interacting pairs) is propor-
tional to the product of the concentrations.
So the very equations of chemical kinetics are

based on the assumption that the concentra-
tions are sufliciently small and therefore the

reactions are su_ciently slow, so no wonder
that Matiyasevich's algorithm is very slow.
Hence to speed it up we must find chemical

equations for the case of large concentrations.

For large concentrations molecules do
not have to find each other to start the re-
action: they are already there, so they start
the reaction immediately. Therefore the re-

action rate in this case is proportional to the
number of matching pairs. E.g., in the reac-
tion A + B ---* C, if the concentration of A
is greater than the concentration of B, then
all the available molecules of B will be im-
mediately interacting, and the rate of the re-
action will be proportional to the concentra-
tion orB. In case the concentration of B is
greater, then the rate is proportional to the
concentration of A. In both cases it is propor-
tional to the minimum of the concentrations,

so the corresponding term in dC/dt will be

... + min(A,B) + ...

Resulting method : brief description

Given a knowledge base, we:

1) write down all the additional equa-
tions with negations;

2) translate them into chemical reactions
A+ B---_C;

3) write the correspondent system of ki-

netic equations with min instead of a product:

dC/dt = ... + kmin(A,B) + ...;

4) solve this systems of differential equa-

tions numerically, and assign to the elemen-
tary statement A the truth value "true" iff
the resulting concentration of A is greater

than the resulting concentration of --,A, else
assign "false".

(in Section 4 we'll show that this "min" oper-

ation really helps: the new algorithm works
fine both for the example from Blass and

Gurevich (1989) and for random formulas).

Additional ideas. 1) An additional differ-
ence between the chemical reactions and the
rules is that when we apply a chemical re-
action A + B --_ C, we not only increase
the concentration of C, but also decrease
the concentrations of A and B. Therefore
a chemical reaction leads not only to positive

terms k min(A,B) in dC/dt, but also to nega-

tive terms -k min(A, B) in dA/dt and dB/dt.

When we apply a rule A,B ---* C, then our
degree of belief in C increases, but our be-
liefs in A and B do not decrease. Therefore,

when we apply the chemical kinetics equa-
tions to knowledge bases, it is reasonable to
delete all negative terms and leave only the
positive ones.

2) In chemistry we are interested in the

dynamics, but here we only want to know who
will survive. Therefore, if after some itera-

tions it will be clear, say, that the concentra-
tion of the substance A is going to be much
bigger than the concentration of -_A, there is
no sense to wait until the substance _A com-
pletely disappears: it is reasonable to "stop"
the reactions, delete -_A and continue the re-
actions without it.

If the resulting Boolean values do not

satisfy the formulas from the original knowl-
edge base, it can mean either that the knowl-

edge base is inconsistent, or that we were too
quick to decide that -,A is going to disappear.
In order to check what is the case we can
delete A instead and repeat the whole proce-
dure. In other words, if the above-described
procedure does not lead to a solution, we can
backtrack.

Let's now describe this idea formally.

4. PROPOSED ALGORITHM

AND EXPERIMENTAL RESULTS

Preliminary comments

We consider only the propositional case
(without variables). This particular case is of

certain interest, because it is NP-complete,

\

15.t.4

and so no algorithm with the running time
better than the exponential time is known.

Definitions and formulation

of the problem

Suppose that propositional variables
Pl,P_,...,P,, are given. By a fact we mean

an expression Pi or "_pl for some i. By
a rule we mean an expression of the type
fl,...,fk --* fk+l, where fl,...,fk+l are facts.

By a propositional knowledge base (or sim-

ply a knowledge base) we mean a finite set of
facts and rules.

By an answer set we mean a sequence of
n truth values vl, v,. We say that a fact pi
is true in this answer set, if vi = true for that

i. We say that a rule fl,...,f_ _ f_+l is true

if the correspondent propositional formula is
true, i.e., either .fk+_ is true, of one of the

facts fl,...,fk is false. We say that an answer
set agrees with the knowledge base if all its
facts and rules are true for this answer set.

The problem is: given a knowledge base,
to find an answer set that agrees with it.

Comment. This is, of course, a slight re-
formulation of the propositional satisfiabil-
ity problem: by definition an answer set
agrees with a knowledge base iff it satisfies a
propositional formula, that is a conjunction

of all the facts and rules of the knowledge
base. Vice versa, any formula in conjunctive

normal form (CNF) can be represented this

way. But satisfiability problem for formulas
in CNF is known to be NP-complete, there-

fore the problem of finding an answer set that
agrees with a given knowledge base is also
NP-complete.

Formulation of an algorithm

Step I. Eliminating facts. First of all, if a
knowledge base contains two opposite facts f
and --,f, then it is inconsistent and no answer
set can agree with it. In case there are no
such facts we can eliminate the facts from the
knowledge base as follows: Since all the facts

f from the knowledge base have to be true, we
can assign true or false to the correspondent
vi and substitute f = true and --,f = false
into all the rules. Namely, if f is one of the

premises fi of the rule fl,..-, f,,... _ fk+l, we

THE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991

can delete fi from the list of premises (since

it's always true); if --,f is one of the premises,

then we can delete the whole rule (because its

premises are always false and hence the rule

is trivially true). If f is a conclusion of the

rule and f = true, then again we can delete
the rule, since it is trivially true. The only
remaining case if when f = true and the con-
clusion of the rule is --,f. In this case the rule
fl,...,f_ _ -'f means that it is impossible
that fl,...,f_ are all true and can be there-

fore rewritten in the form fl,..., f_-i ---+ "fk.

If after this procedure some rules turn

into facts, we can eliminate them again, etc.
Finally we reduce our problem to the case
when a knowledge base contains only rules
and no facts.

Step 2. Adding adjacent rules. For every rule
fL,...,fk _ fk+l we add k new rules to our

knowledge base:

f1,'",ft-l,fi+1,'",fk,_f_+1 "'+ "fi,

where i = 1,...,k. These rules will be called

adjacen t.

Step 3. Iteration process. To every variable
Pi and to its negation "-'Pi we put into cor-

respondence a real-valued variable ti (corre-

spondingly t-i), that will be called our de-

gree of belief in Pi (resp. -_Pi). Set the initial

values ti (°) of all these variables to 1. Then

apply the following iterative process:

ti(k+_) = t_(k) + c(min(t, (k),...,t, (k)) + ...),

where c is some positive constant, the sum
is taken over all the rules Pr,...,po '-* P,
that contain pi as a conclusion, and the mini-

mum is taken over the degrees of belief of the
premises of that rule.

Comment. This equation corresponds to Eu-

ler's integration scheme for a correspondent

differential equation, with the values ti (t) rep-
resenting the values of the chemical concen-
trations in the moments l_t, where 6t is an

interval between two consequent moments of
time. Here c = k_t, where k is a coefficient of
that chemical equation.

Step 3 (continued). The number m of itera-

tions if fixed. After several (m) iterations we

"\

THEWORLOCONGRESSON EXPERTSYSTEMS PROCEEDINGS1991

choose a variable Pi, i = 1, n,-1 ,-n,
for which our degree of belief in p, maximally
exceeds our degree of belief in its negation,

i.e., for which the ratio tilt-, is maximal (if
there are several such i, we choose one of

them). We assign to this variable the value

true, i.e., we add ps as a fact to our knowledge

base and go to step 1 again.

When to stop this process and when to back-
track. This procedure has to be repeated
until we find the values of all the variables
or until we come to a contradiction. If we
have found all the values, then we must check

whether these values satisfy all the rules of

our knowledge base. If it does not satisfy,
we must take the last variable p, whose truth
value was decided by an iterative process, and
instead of adding pi add --,p, as a fact to our

knowledge base. If we have tried both and
failed to find a solution in both cases, we must
reconsider the previous step, etc.

Example

Let's show how it works on a simple ex-

ample. This example is here only to clarify

the description of the algorithm, not to boast

about its efficiency (this will follow later).
Let's consider the case when there are two
propositional variables a,b and 4 rules a ---* b;
b --, a; -,a ---* b; ',b ---* a. In order to fit
our definition of a knowledge base, we must
rename the variables into Pl and P2. Then
the rules from the knowledge base will be:
Pl --* P2; P2 "-'* Pl; -"Pl -"* P2; -"P2 ""* Pl.
There are no facts, so on the first iteration
we skip Step 1. On Step 2 we add rules ad-
jacent to the first two rules of the original

database, i.e., _P2 _ "Pl and -'pl _ _p2

(the third and the fourth rules are adjacent
to each other, so we do not have to add any-

thing for them). Let's now follow the iter-
ations of Step 3. We have 4 values ti here,
i = 1,2,-1,-2. Their initial values are all

1. The iterative procedure is as follows. For
Pl there are 2 rules with Pl as a conclusion:
P2 ---* pl and -'P2 ---* pl. Therefore the sum
in the iterative equation for Pl will consist
of 2 terms. The term corresponding to the
first rule is just t2, because there is only one
premise in this rule, and the minimum of the
one-number set is evidently this very number.
Likewise for the second rule the term is t_2,

and finaliy the equations take the form

tl(k+l) = tl (k) + c(t2 (k) + t_2(k)).

1515

Likewise the iterative equations for 3 other
variables take the form:

t2(_+1) = t2(k) + c(tl(k)+ t_l(k)).

(_ + 1) (k) (k)t_l = t_l + ct_2

_k+ 1) (k) (k)t_2 = t_2 + ct_l

The initial value of the vector (tl, t2, t_l,

t-2), consisting of the degrees of belief, is

(1,1,1,1). After the first iteration we get

(1 + 2c, 1 + 2c, 1 + c, 1 + c), after the second

iteration we get (1+4c+3c 2,1+4c+3c _,1+

2c+c 2, 1 +2c+c2). Let's choose for simplicity

2 iterations, i.e., m = 2.

After the second iteration the values of
tl/t-1 and t2/t_2 are equal and greater than

1, and the correspondent values for the nega-

tions are less than 1 (and also equal to each

other). So according to our algorithm we add

either pl or p2 to our knowledge base and
go to Step 1 again. In both cases the fact-

elimination procedure of Step 1 will lead to
Pl = P2 = true. These values agree with all
the rules of the original knowledge base, so
we have solved the problem.

Proposed algorithm works fine on the

example of Blass and Gurevich

Before applying this algorithm to com-
plicated knowledge bases let's try it on the
knowledge bases that were used by Blass and

Gurevich (1987) to show that the original

Matiyasevich's idea sometimes leads to a too
slow algorithm. Their example consists of n
propositional variables Pl,...,P,_ and n rules

Pi --* Pi+l for i = 1,2,...,n - 1 and p,, --+ Pl.
The adjacent rules will be _P,+I _ _Pi and

If we start with equal initial values for

degrees of belief, then, due to the cyclic sym-
metry of the knowledge base, on every it-
eration the values of t, will not depend on
i at all. Therefore after m iterations the
values of all the ratios t_/t__ all equal to

1. So we can choose any i, add p, to our

knowledge base, and go to Step 1. If we
choose p_ with i > 0, then by applying the
facts elimination algorithm of Step 1, we get
P, = P2 = ... = Pn = true. If we choose p,

I I ¸

\,

1516

with i < 0, meaning that we add _PI,I to the

knowledge base, we likewise come to a con-
clusion that Pl = p2 = ... = P, = false. In
both cases the result agrees with the original

knowledge base, so we have found a solution

(and rather quickly).

If we start with random initial values of
the degrees of belief, then after rn iterations
we also choose some p,, and depending on
whether i > 0 or i < 0 we also get one of the
above- described solutions.

Surprisingly this algorithm almost

coincides with a neural motivated one

It can be shown (Kreinovich (1987)) that

this algorithm coincides with the algorithm,

that was proposed by Maslov (1987) as a
result of his analysis of human neural net-

works (the only difference is in our chemical-

motivated backtracking). The algorithm of

Maslov has been experimentally tried, and on
some graph coloring examples worked much
better than its competitors (the results are

briefly described in Maslov (1987)). More-
over, Maslov tried different functions instead
of min and it turned out that experimentally
the results with rain were the best. Our chem-
ical interpretation allows us to explain this

phenomenon, because rain corresponds to the
case of highest concentrations and hence of

highest rates.

Algorithm works fine

for big random formulas

The choice of the formulas: general idea. We
have already mentioned, that a propositional

knowledge base is equivalent to the proposi-
tional formula in a conjunctive normal form,

i.e., is equivalent to a sequence of clauses
fl V f_ V ... V fk, where each of f, is a literal,
i.e., a propositional variable or its..negation.
So instead of generating random knowledge
bases we can generate random propositional
formulas. One of the most natural ways to do

it is to fix the number of clauses C, the num-
ber of variables V and the number of literals
per clause L. In this case we have CL places

(L places on each of C clauses) to fill with one
of 2V possible literals pt,...,pv ,-_Pl,...,-_Pv.
So into every place we put each of the liter-

als with probability 1/(2V), and we fill every

THE WORLDCONGRESSONEXPERTSYSTEMSPROCEEmNGS1991

place independently on how we fill all the oth-
ers.

The choice of the formulas: what parame-

ters to choose. Depending on the parame-
ters C, L and V, we can either come to a

situation where the majority of Boolean vec-

tors satisfy the given formula, or to a situ-
ation where such Boolean vectors are quite
rare. In the first situation a random choice
or a simple backtracking quickly find a satis-
fying Boolean vector. So in order to make our
experiments convincing we consider only the
situations with few satisfying vectors, when

backtracking is too slow.

It's known how to compute the average

number of satisfying Boolean vectors (Pur-

dom & Brown (1987)). The probability that

for a given Boolean vector vl, v_, ..., vn a ran-

domly chosen literal is false is 1/2. But the
literals are chosen independently, so the prob-

ability that all L literals of the clause are false

is equal to (1/2) I = 2 -L A clause is true iff

not all its literals are false, so the probability
that a clause is true in this very Boolean vec-

tor equals to 1 -2 -/` . Likewise independence
leads to the fact that the probability that the

whole formula is true equals to (1 - 2-z') c.
The total number N of Boolean vectors in V

variables is 2 v, therefore the average num-

ber of Boolean vectors satisfying a random

formula equals to the product of 2 v and the
probability that one vector satisfies it, i.e., to

2 v (1 - 2 -L)c. For our experiment we chose

C = 350, V = 20, L = 5; in this case out of

a 2 _° _ 106 Boolean vectors about 15 satisfy
the formula.

"Brute-force" backtracking: running time es-
timates. The following arguments lead to
a crude heuristic estimate of the number of
backtracks that we need to find a Boolean
vector. Namely, since we consider random
formulas, we can consider every backtrack as

resulting in one more random Boolean vec-
tor to try; the average number of such tries
can be estimated as a number T of tries af-
ter which the probability to find a vector

equals to 1/2. The probability p to find a

Boolean vector after the first try is equal to

(1 --2-L) c _ 0.000015. The probability to

miss the solution is therefore 1 -p, and the
probability to miss the solution after T tries

equals to (1 -p)T. Therefore T is deter-

J_

HE WORLD CONGRESS ON EXPERT SYSTEMS PROCEEDINGS 1991

fined by the equation (1 -p)T _= 1/2. So

_ ln(1/2)/ln(1 - p) _ 50,000.

Our experiments confirmed this crude es-
imates: actually, in some cases backtrack-

.lg did not lead to any solution in reasonable
ime, but the average for the cases when it
'orked was well above 104 .

)ur algorithm: experimental results.
)ur algorithm worked in all cases; the aver-
ge number of backtracks was 57, the greatest
_as 252: hundreds times smaller than for the
sual backtracking•

'3xperience of actual application :

tiagnosis of logic circuits

We applied our methods to the problem
,f locating defective gates in logic circuits•
•Ve consider the realistic case, when we know

hat the circuit is defective (because the ac-

ual output is different from what we expect),

_ut we have no a priori statistical informa-

ion (how often are different gates defective)•

Fhere exist several sets of gates, such that
f we assume that all the gates form this set
_re defective, we explain the observed output.

_eiter (1985) proposed to choose a set with
ninimal number of elements. He also pro-
_osed an algorithm that is based on analyz-
ng first sets with one element, then two-gate
_ets, etc. This algorithm works fine for small

=ircuits, but for actual circuits with many
_ates it can take a long time.

As an alternative we reformulate diagno-
;is as a satisfiability problem: we introduce
:he propositional variables that express the
:nput, output and all the intermediate sig-
aals, add a variable for every gate that is
true iff this gate is not defective, and express
the signal processing in the gate by a corre-
sponding propositional formula. For exam-
ple, if A represents an AND gate, p and q its
inputs and r its output, then the formula is

A --+ (r = p&q). Then we apply the above
algorithm to this formula, with the only dif-
ference that we take t_; << t, for p_ that rep-

resent the gates. This is done because most
of the gates are normally good, so for a given
gate we have more reasons to believe that it
is good than that it is defective.

1517

The resulting algorithm worked quickly

both for examples from Reiter (1985) and for

the actual defective circuits (for details see

Fuentes (1991)).

ACKNOWLEDGEMENTS

This work was supported by NSF Grant
CDA-9015006 and NASA Grant NAG 9-482.
The authors are greatly thankful to M. Gel-
fond, Yu. Gurevich, V. Lifschitz and N. B.
Maslova for valuable discussions.

REFERENCES

Aris, R. (1969) Elementary chemical reactor

analysis. Englewood Cliffs: Prentice-Hall.

Blass, A. & Gurevich, Yu. (1989). On

Matiyasevich's nontraditional approach to
search problems. Information Processing
Letters, 1989, 32, 41-45.

Fuentes, L.O. (1991) Applying uncertainty

formalisms to well-defined problems. Unpub-
lished master thesis, University of Texas at
E1 Paso.

Fuentes, L•O. & Kreinovich, V. (1990) Sim-

ulation of chemical kinetics as a promising

approach to expert systems. Proceedings of
the Southwestern Conference on Theoretical
Chemistry (p. 33), E1 Paso, TX.

Kreinovich, V. (1987) Semantics of Maslov's
iterative method. Problems of Cybernetics

(Moscow), 131, pp. 30-63 (English transla-

tion to appear in Amer. Math. Soc.)

Maslov, S. Yu. (1987) Theory of deductive

systems and its applications. Cambridge,
MA: MIT Press.

Matiyasevich, Yu. (1987). Possible nontra-

ditional methods of establishing satisfiability
of propositional formulas. Problems of Cy-

bernetics (Moscow), 131, pp. 87-90.

Purdom, P.W. & Brown, C.A. (1987).

Polynomial-average-time satisfiability prob-
lems. Inform. Sci., 41, pp. 23-42.

Reiter, R. (1985) A theory of diagnosis from
first principles. Technical Report, Computer

Science Dept., University of Toronto.

i

• .°

,: 7_,i

t,
' (

}
s:.

?;

"_

ORIGINAL FAOE IS

OF POOR QUALITY !!

